Exact wave functions and geometric phases of a generalized driven oscillator

نویسندگان

  • Min-Ho Lee
  • Hyeong-Chan Kim
  • Jeong-Young Ji
چکیده

The generalized invariant and its eigenstates of a general quadratic oscillator are found. The Schrödinger wave functions for the eigenstates are also found in analytically closed forms. The conditions for the existence of the cyclic initial state (CIS) are studied and the corresponding nonadiabatic Berry phase is calculated explicitly. 03.65.-w Typeset using REVTEX ∗e-mail:[email protected] †e-mail:[email protected] ‡e-mail:[email protected] 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric phases in the simple harmonic and perturbative Mathieu’s oscillator systems

Geometric phases of simple harmonic oscillator system are studied. Complete sets of ”eigenfunctions” are constructed, which depend on the way of choosing classical solutions. For an eigenfunction, two different motions of the probability distribution function (pulsation of the width and oscillation of the center) contribute to the geometric phase which can be given in terms of the parameters of...

متن کامل

Geometric Studies on Inequalities of Harmonic Functions in a Complex Field Based on ξ-Generalized Hurwitz-Lerch Zeta Function

Authors, define and establish a new subclass of harmonic regular schlicht functions (HSF) in the open unit disc through the use of the extended generalized Noor-type integral operator associated with the ξ-generalized Hurwitz-Lerch Zeta function (GHLZF). Furthermore, some geometric properties of this subclass are also studied.

متن کامل

Spectrum of geometric phases in a driven impact oscillator

We study the geometric phases underlying the time evolution of the quantum wavefunction of a driven nonlinear oscillator which exhibits periodic, quasiperiodic as well as chaotic dynamics. In the asymptotic limit, irrespective of the classical dynamics, the geometric phases are found to increase linearly with time. Interestingly, the fingerprints of the classical motion are present in the bound...

متن کامل

Evolution of Gaussian Wave Packet and Nonadiabatic Geomet- rical Phase for the time-dependent Singular Oscillator

The geometrical phase of a time-dependent singular oscillator is obtained in the framework of Gaussian wave packet. It is shown by a simple geometrical approach that the geometrical phase is connected to the classical nonadiabatic Hannay angle of the generalized Harmonic oscillator. Explicitly time-dependent problems present special difficulties in classical and quantum mechanics. However, they...

متن کامل

Exact nonadiabatic holonomic transformations of spin-orbit qubits.

An exact analytical solution is derived for the wave function of an electron in a one-dimensional moving quantum dot in a nanowire, in the presence of time-dependent spin-orbit coupling. For cyclic evolutions we show that the spin of the electron is rotated by an angle proportional to the area of a closed loop in the parameter space of the time-dependent quantum dot position and the amplitude o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997